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NASA TT F-10,796

TOWARD A GENERAL THEORY OF ELASTIC EQUILIBRIUM EQUATIONS
FOR AN ISOTROPIC BODY

Orazio Tedone (Genoa)

ABSTRACT. Elastic equilibrium problems are formulated
and solved in the form of definite integrals wherever pos-—
sible. No mass forces are assumed. Problems in which the
boundary forces and boundary displacements are spec1f1ed as
well as the general mixed boundary condition problems, are
treated. Infinite planes and spheres are considered as
boundaries. The problems reduce to ordinary or partial dif-
ferential equations.

INTRODUCTION

The methods of a general nature, which have previously been used to solve /129%
problems of elastic equilibrium for an isotropic body may be reduced substan-
tially to two -- Lamé's classical method for series expansions of simple func-
tions and that for definite integrals, commonly called the Betti-Cerruti method.
The first, which was really created and successfully employed to solve many
other problems in mechanics and mathematical physics, cannot be applied beyond
a very restricted number of cases as far as our problem is concerned. In addi-
tion, it is complicated by the not easily surmountable difficulty of determining
the constants when we satisfy the surface conditions. The second method has
indeed an appearance of great generality, but -- perhaps precisely because of
this great generality -- it has all the characteristics of an abstract method,
showing itself to be little adapted to, or flexible in, the relatively simple
problems of the equilibrium of isotropic bodies. Although notable results have
been obtained by its use, it is my opinion that these results are to be attribu-
ted more to the study and thought which the eminent practitioners of the science
-- who wanted to give this method life -- have put into it, rather than to the
intrinsic value of the method.

I turned these considerations over in my mind many times when I had to /130
delve into the subject for another purpose. From my study I was able to derive
general principles which seem to me more suitable than those heretofore
in use to obtain, or at least to attempt, a solution of elastic equilibrium
problems for isotropic bodies. Exposition of these principles and application
of them to various special problems will be the subject of this report, and of
any other which may follow it.

I hope that when I have demonstrated the fact that all the problems whose
solution is known may be solved by a uniform method, simply, and even perhaps,
elegantly, and the fact that another large class of problems is also susceptible
of relatively simple solution, my views and my work will be judged with a
certain indulgence.

As far as is possible for me to do so, I will present the solutions of the

* Numbers in the margin indicate pagination in the original foreign text.




separate problems in the form of definite integrals, since these solutions

have the advantage--over those presented in the form of series expansions--that
they include all the elements of the problem in an artificial way: initial data
and results. Besides, methods of verification are often quick and simple. We
may also obtain analytical expressions in series form from the analytical ex-
pressions for the definite integrals, whereas the inverse problem is not so
simple.

In this Report, I will deal with problems in which the surface of the
elastic body is a plane or a sphere. yd

I. Equations and General Principles

1. Let us immediately decide to call x, y, z the coordinates of any point
in space and--every time that an attempt is made to represent a definite
integral function--to call &, n, ¢ the points of the variable point on the
surface, or in the portion of the space over which integration is extended.
Let us also agree always to indicate by S the portion of space which is occu-
pied by the elastic body which is finite, or infinite, and connected, and by
o its external surface, which we will assume in every case to satisfy the
conditions under which Green's theorem may be applied in space S.

In order not to introduce useless complications, we will always assume
that the elastic body is not subject to external mass forces. Then the in-
definite equations of elastic equilibrium of a homogeneous and isotropic body

may be given in either of the two following forms /131
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in which A and p are Lamé's two known constants, which, as is known, are sub-
ject to conditions . .
81+2p>0, >0 3

The components X , Yn’ Zn of the stress acting over one surface element of
n

the elastic body located in the position of normal n are given by the following
formulas . iy , .

X,.=19cosna:+29(—-+mzcosny—mgcosnz),

. dn ‘ : %)



Y;.=10c0513y-{-2y(§—,‘q+a,cosnz—c,cosnz), |

Z,.=lscosnz+2y(g—'z+m,cosnx—a.cosny), . (4)

d 2 ..., D
: —T’=a7;cosnx+a—gcosny+a—zcosnz.

If, for purposes of brevity, we indicate by L, M, N, the values assumed by

_Xn’ - Y, -Zy in the points of ¢, when normal n to o is understood to be

directed to the interior of S, the most general problem, which we wish to treat
here, may be stated thus: Let us find a system of functions u, v, w which are
regular and satisfy expression (1) or expression (2) in S, such that three of
the expressions u, v, w; L, M, N,~-of which only two, say, u and L, corresponding
to the same coordinate axis--assume assigned values in points of o.

2. To solve these problems let us begin by establishing certain funda- /132
mental formulas. Therefore, let us indicate by G the ordinary Green function
relative to space S and to point (x, y, z) inside S, which, as is known, when
considered as a function of the coordinates of the variable point (£, n, ) or
of the coordinates (x, y, z) of the pole, is regular and harmonic* in S, except
when £=x, n=y, ¢=z, in which case it becomes infinite in the manner of

- r=ylE—+@—n+E—2¢r,

and vanishes in the points of o. Let us similarly indicate by G; the other

Green function which within S satisfies the same conditions as G, while on ¢

the normal derivative dG] assumes a constant value** which is zero only in the
dn
case in which S extends to infinity. In this last case, G and G| become zero

at infinity in the manner of potential functions. It is known that under these
conditions, functions G and Gl exist and are uniquely determined in the most

general cases.

If we then find that -- when 6 is a harmonic function in S —- the first

To speak more precjgely let us say that by harmonic function we mean any
function whose second-order differential parameter is generally zero, and
by harmonic and regular function we mean any function that, besides being
harmonic, is uniform, finite, and continuous, together with the first-order
derivatives in that region of space in which we consider it.

%% If we want to construct function G) effectively, it is perhaps more conve-
nient to start from Klein's definition, by which G} has in S two poles of
first order at the points (x, y, z), (X3, ¥gs 2Zp) instead of one, with the

residues +1 and -1, and such that dGy become zero over o.
dn



equation (1) may be written as

A’—[u + 1;—*;—“—‘:: 9]‘=_j 0

At U
by applying Green's theorem to the functions G and u + x0 in S, it is
2
found, assuming that u and 6 are regular in S, that
_ 17 da l+p 1+pf ‘
u—4‘_.J u o, dao 2!" EG 2 (5)
Z -
a formula which may also be written
1 ¢ + iG 7 /133
“r—f“r“*’r f(' N gw 4o (5"

Similarly, under the same conditions for u and 6, application of Green's

‘ A+
theorem in S to the functioms Gy and u+rvai x0 gives the following

2u
= Zl—f da-—}—;:—y' 6—% a5 eGda-{-—cost: “ (6)
e
a formula which may also be written
—-——fd"Gd ”“ ‘”"d—n”””’]e da cost. 6"

Similar considerations also hold true, of course, for the other two
equations (1).

Here we should like again to observe that, if S extends to infinity, the
constants which appear in the second terms of expressions (6) or (6') are zero.
However, in this case we will assume for the applicability of Green's theorem
that function u + A2+ L.

x 0 and those like it become zero at infinity with

order higher than 1.

r

3. 1If the attempt is now made to solve the problem of elastic equilibrium
when the values of displacements u, v, w on the surface ¢ are given, we may
observe that, because of expression (5) and similar ones, we can write

1 dG )\+L. + . ¢_i£
u=4ﬁ“[u2;d0— 2("' o ;ed”_dc, }

¢ ‘e

(5™



1 dG Ade l+yf a6 ;
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W= - foﬁdé— 2% 26 + 8=H."C5d”dc

and that in these formulas the first terms on the right side are known. The
problem is then reduced to determining function 6, harmonic and regular in S,
so that the equation

_Ou ,0v, 3w
=t ta

A8, 1[0 [ dG 2 (.46 2 (4G, 1_ %
L o . o ‘
_A4pf 29, 20 286 |
A4 ufd 4G 2 dG 2 dG
+ 5= [;ﬁf“’rd”’ry F +5;f”d "] |
© L 4 '

will be identically satisfied.

It may be noted that, based on the hypothesis made regarding 6, the right
and left sides in equation (7) are two harmonic functions; equation (7) will
thus be identically satisfied in S if it is identically satisfied in all the
points of surface o. The problem which has been formulated may therefore be
reduced to determining the values which ® must assume in the points of o by
means of the equation to which equation (7) is reduced in the points of o.
Harmonic function 6 will be constructed with these values.

If instead an attempt is made to solve the elastic equilibrium problem when
the values for L, M, N are given on o, we will note that for expressions (4) we
may write

A - |
L—g-fcosnz—meosny +acosnz,

a&

1
2p

- 3 . . - - e e - . - e e - . - -

and that therefore for expression (6) and similar ones the following equations
may be written:

u =3;P~;‘-L G, ds -l-:}’—:‘[[g%0cosn£+mcosnn_——m,cosnz;] Gfda—‘ ®

Abp A (dE0 -
— _»1»;0---8’_"_y~ T .da-%c@t, !



1.

V= ——B:FJ‘MG.da+;l—7=f[é}éGcosn-rz—l-w,cosn?.'——m,cosn&]G,d»_’

[ 4

2 A dx '
—_ ————+P'y0 — »S—Tyf‘—i;; G, d s + cost.,

2=
o _ ‘ (8)
zw—l~fNGda+l— 19 sng 3 G.d
—81:;1. s iz Q_Z cosng -+ w,cosn; — o, cosny |G, .a_‘
[ . [ N ) " . .
A4p A4p(dl0 :
o 29—8‘;“' —d—”G‘dC’—i-COSt. j
. -4
in which the first terms on the left sides are known. In this case, the /135
problem is reduced to determining the four functions 6, Bi; w2 53, harmonic
and regular in S, and the fact that there they identically satisfy the four
equations
Ju do ow 0 a \
= 204 09, v _0dv
M RN PRE PR Il ria L
du v o 2 s \ (9)
2°=—"—'—— =-—"——-'£.
"=z s %=y, 7y Do

We will not develop these equations, but we will not fail to observe that
remarks may be made about them similar to those which we have made about
expression (7).

If, finally, the attempt is then made to solve the problem of elastic
equilibrium in the case in which several of the u, v, w; L, M, N values are
given with the indicated restriction, expressions (5) and (8) will be of timely
use to us, and the rest of the solution will proceed as in the preceding case.

Determination of harmonic function 6 from expression (7) or of functions
0; W1, By, W3 from expression (9) or from similar equations constitutes the
peculiar difficulty of the corresponding problem of elastic equilibrium. We
are not concerned with demonstrating the fact here that expression (7) or
equations (9), for example, keep their meaning on surface o, and that they are
suitable for determining the values there of 6 or of 65 W, Wy, w3 2 finite
and continuous functions of the points in o. That will certainly be the case
under very general conditions, but an exact reply to such questions would en-
tail a theorem for the solution of our problems, and we hope to be able to
return to this later on.

II. Problems in Which the Elastic Body Is

Limited by an Infinite Plane

1. Case in which u, v, w are given on the limiting plane. Let us
assume that the elastic body is limited by the plane z = 0O and occupies that
region of space in which z > 0. 1In this case Green's function G for the
point (x, y, z) inside S reduces to

6



r L8 i
where r and rq are the distances of point (x, y z) and of the point symmetri- /136
cal to it with respect to plane z = O from the same point ( £,n,z) in S. Hence

noting that for ¢ =
7L
¢iG 0G (__1)
(a( =o=2( §‘° _ —2 92 ;=°,\

equations (5') and similar ones immediately give us

L0 [ug,42te, fd,!

2zdz) r 4up Bx
. ' (10)
1.9 v w o
v=—gzas) ¥4t T a—yf -4 s

1 . 8 :
wee— 2L Las 4 - ;;J-—r—da, I

eqxdz) r 4=y

while © will be given by

_ B 20 (u 2 (o 2 (= }
9“"x(x+3y)az[ﬂf7d°+3_y "d“.+3zf da" (11)

af%d —ﬁﬁ[axi Glf_ _ Wd ] (12)

Contrariwise, assuming that funct1ons u, v, w given on o arée finite amd
continuous functions of the points in plane o which also have finite partial
derivatives of the first order with respect to x and y, and that in the points
at infinity of the same plane ¢ they become zero with orders superior to that
of 1 , the integrals

by which

- |
t [*do, jlda, 'fﬂda:
Jr ! ro. r
o g L4
are finite and continuous functions in the whole space. Their first derivatives /137
0 u;" duwdd dude jlfg_ .
ﬁ .;-da' a; r, f do 311'" Dz rda?...
o -2

and their second derlvatlveS

0t (v, 3 (dude 7 0 (dudoc o
3x'f; _a‘aE FH r’ay d 5_7 5_731’0z'f do=
. - ot o
-_3aﬂ d 3y' da,...



are finite and continuous functions in S and tend toward finite limits when we
approach the points in ¢; functions u, v, w given by equation (10), when it is

_ 0
assumed that integral .f;da‘ is given by equation (12), are regular and iden-
[
tically satisfy equations (1) in S, whatever may be the values of the constants
A and u. Moreover, when we approach the points in ¢ they tend toward the
corresponding values assigned to these points. Function 8, fimally, given by
equation (11) is harmonic and regular in S and on ¢ tends toward finite values.

2. Case in which L, M, N are given on the limiting plane. Green's function
Gy relative to space S and to point (x, y, z) reduces to

11
>t

and therefore on o takes on the value of % . If for £ = 0 it is noted that

. . d )
cosni=0, cos nn=0, cos.nf=1, =3¢
equations (8) immediately give us
1 L 1 (@ A p_@_ 'Qg \k
U=gma)r P as)7 o0t 4—“.-yaxJac’d°’ |
< o 4 |
1 (M, 1 (@ Atpd (00 , (13)
'J=4———_y’.—r—-d0_+é—_ '—d0'+4_y.ay.!a;rdd,-
i N 1 (6 A4y @ fof ‘
0= — —r—da—:[Tda-!- 4:11'32_’5?7 do /,

and to complete the solution of our problem the harmonic functions 6, 1> Jb /138
of the following equations

2 +3p, 1 ,3_J‘£ . a_ 3fN _
- ‘9—4:,1[35; Lday j do+ do
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remain to be determined.

To find 6, mi,vaé, from these equations, let us note that since
) g Y " 9 Nda |
2 (Lgo (2320, 0 [~ aam fa oo, aJ o= 2225,

oz 35 r dylr ogr 0z

¢

the same differential relationships hold between integrals
[_d f de fmd m’da

as between the quantities 6; p1, 2> 5'3. Hence

0 !.'lzd 0 d 1+2u3 0 )+2y_
3w 34 r T2p |
and the first equation of expression (14) g1ves us
=1 f2 (L ? (M
2z(1+y-)[3wf7fic+8_yf a +a f“‘" ] (13)
from which we have ‘
J dc=—m[awalog(z+’)do
(16)
fMlog(z+;)da 3 leog(z+1)da]
The other two equations of expression (14) then immediately give us /139
1 o (M . Cy
el AfFele .,\
l - .
+rc—>may[ fL‘°g<z+'>"°+

af]i[log’(z+;)da—]-a leorr(z+7)d§], :

o L '
’_ 4rp[32f da]_.
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ToTR 3::[3.1: [L]og(z+r)da+

17
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and all the elements of the problem have been determined.

Inversely, if we assume that L, M, N are finite and continuous functions
of the points in ¢ and become zero at infinity with an order higher than 12 ,
r
the integrals

f%—dv&,... | leog(z"-i-r)‘d»&;..'.

will be finite and continuous harmonic functions in all of S. The first-order
derivatives of the first type and the first- ad second-order derivatives of
integrals of the second type will converge to finite limits in the points in

0, for which the functions 6, Bi, Gé determined from expressions (15) and (17)
will be harmonic and regular in S and will converge toward finite limits on o.
If then we note that

|

i fgg’.da‘;?fgd_al“f“;}g;(‘?-‘—r)‘?d,' }

it turns out that also the values of u, v, w determined from expression (13) are
regular functions in S and identically satisfy expression (1), whatever A and

u may be, If, finally, we note that for expression (13) /140
on 1 o0 (L A4p 029
3—2—4.-.;:.8_5_[7‘“-{—6" 3r 29z’

. . [ 4
dv 1 2 “M A4+p 08
3z 4dwmpdsl 7da B' 2p Ik
- g
dw __ 1 l[l_*fd _ X rtp 08
0z 4npdz) 2u 2p "0z’
g
under the assumption that derivativeS.gg, Qf, 29 have finite limits on o,
o« 0y 0z,

which is certainly obtained if it is assumed that L, M, N have their finite
first derivatives on o, it is found that

and the neighboring conditions are also verified.
By making the formulation

?=fL]og(z+r)dc, 2)2=J-Mlog(z+r)dc, 92=fN]0g(z+r)do’,

o

10



= j(zlog(z+r)—1)da, EUI_-I (z]og(z+r)—r)da o L

——fN(z log (z + r) - r)
8, M, AWM % oM , M- - ‘
V=t a, tas° t=gat 7y T3 |

it is easily found that , )
0 ) S
f—;dc._——~— J-Qlog(z-{—r)da-——l_*_y-a .

e — (392 3202) 1 37
Jr 2u\dy iz 2(1 i—y) 33/
G, 1 8_&3__392 1 3/ |
J rda_ 2;1.(32 Bz)+2(A-f p) oz’ |

and expressions (13) take the form which was given them by Professor Cerruti: /141

w— L 28 1 0z = 24, 1 2@ 2% |
4np 0z 4=(A4p)dz 4=pdz ' 4=+ ay(ﬂ—'a?)’ ;
L e N BN L )
47y 0z 47=(A+4p)dy 47pdy 4mpdz\d ay)’ 1

3. Case in which u, v, N are given on the limiting plane. To solve the
problem now posed, we will make use of the formulas

__ 1 0 (u Atp 0
¥=—3z 7z, ;'_d +47:y. B:I da, ‘ \
__ 1 d(» 1-}—‘1;. 2 (9 |
V=T33 azJ-rd°+47:p.zﬁ_g_/ 7dq’ _ l (18)
1 N 1 (8 A ]
w=—aj7da—nj;qa+ te, 8 9,,.

The problem is solved as soon as we succeed in finding 6, and this function is
immediately given by equation

9=",.—(T-%2T)éa'z.[axf J' do— L!-ﬁfda]- | (19)

11



Under conditions which are easy to investigate, it is conversely shown
that for functions u, v, N on plane o, all the conditions of the problem are
satisfied.

4. Case in which L, M, w are given on the limiting plane. This new
problem is also easily solved with the formulas

__1 L, 1 Atp 9 (29 \
U -_“'("' da 2 d + i= " 3.’6 a; dc, )
g1 (M 1 (@ 1-+-u4 3 29 J
0“4«(& d0+ J d + y- BC’dc’ "
o ‘l Adp 2 30‘ f
w=— a2z Bzf do o . 4mp 0z Efrd“' -
and by determining 6, wl’ wz from equations
A+2w, 171 2 (L 19 (M, (w ]_\
n 9——[‘““ 7 ae 2u3y[rda 3"!".‘“
o 0 (™ )
2:[‘a—x [Fao—gy[Fac])
L aqa (w1 (M, 6 ( n
1 1w M ,
.“*=“z—-5‘z[a_u 7ot f a:]

1 a4
&= 9z 8z[2u r ,f do ]

These formulas solve the problemJ This can be established directly when
it is assumed that the knowns satisfy conditions on the plane which are similar

to those which we have established in the preceding cases.

We may also add that from the last two equationé in expression (21) we

have o -
1 [8 (= b (@ 171 2 (L |
1t LA Ll B Prbrd PR |

dx) r 2%
o

L1 2 (M, (w
- +’2_§L—3—;J‘7_d°—3>z’.’ r dc]

H |

s

and that, therefore, 6 is given simply by formula

p_ [1 @ (L 1 9 M f_ ]

5. Cases in which u, M, v or L, v, w are given on the limiting plane.
These two new problems are identical, since one is derived from the other by
interchanging the x and y-axes. We will assume that u, M, w are given, and
will write the formulas

19 44, ‘+“ f do,

12

(20)

(22)

[142



1 M ol

f 5o

4ry
P 1+ . (22)
RSN L . il fda..
w 2=z 0z)r “F 4»y
o \
In these formulas the only unknowns appearing are 6 and G;. Therefore, to /143

solve the problem it is sufficent to determine these two magnitudes. The second
of them is immediately given by formula

while 6 must be derived from an equation which, by taklng advantage of equation
(23), is reduced to

1+390=L1[ f dot 1l Jll[locr(z+r)da—

azfg c+a leog(z-}—r)do]— 7‘ - (24)

2 0
4;I-uftayJaIOg(z+r)da |

Now since 6 is harmonic and moreover equals
3 J’elog(z-l-r)da,v
it is easily found by setting -
9=J‘Glog'(z +7)do,
g .‘ - -
that equation (24) may be given the form

Af3pdty  A+2ude Of 9 (u
2p Ozt @ ay S dz| é«x

24!
+-‘1:;3J'Mloa(z+r)da——r d + J-wlog(z-{-r)d.,]. |3 (249
P l
We can easily demonstrate the fact that there can be but a single function

8, harmonic and regular in S, such that the corresponding function ¢ satisfies
expression (24'). 1If, in fact, two functions —— 6 and 6' ~- could be deter-
mined, by calling ¢' the function analagous to ¢ and related to 6', the
difference

S~
=
P~
£~

would have to satisfy equation

13



et Sl T =,
2p 3w’+- g 0y
Now by setting
| |
t,=1x 7"’;2".5.;3, Lr_‘;“ \/"+2l‘ g\At3e,
|

the general integral of the last equation is given by

y=F )+t + Fi2)

where f,, f,, fg are arbitrary functions. But since t t,, and z also may be

1 _
regarded as arbitrary parameters in order that y satisfy equation A% = 0, it
must be the case that

f's—=cost, f"y=cost, f's=-cost.

If it is then noted that 6 must also become zero at infinity, it is found that

f5 = 0 and therefore in identical fashion .
, 1 9% |
9_9::_2-:62’ =0. |

On the other hand, if we call &', n' the coordinates of x and y which appear
on the right side of equation (24'), it is easily found that the function of x,

y, Z satisfies A
1 0
f=2zi72fd [ 9Ef de +
¢

, .
ey ;’Mlo«r(z+1)da——J’ d°+ (25)

+5a;—.2jwlog(z+r)da]10g\/l+3 @ r')'+1+2 =]

in which do' = d&'dn' satisfies equation (24') and is harmonic. The first
property is evidently fulfilled since the function of x, y

2w e 3 e
log 5 = 8 + g =

satisfies equation (24') when the right side is zero, and becomes infinite when
=E&', vy =n' in the manner of log r. As for the second property, it should

be noted that, if x is a function of the points in plane ¢ which becomes zero

at infinity, together with the first derivatives | /145

fx gvx¢3(x—5r+;;3;w—wrde=ﬁ'

J-axlo v1+3'l.(x— )’+x+2“(y-n)’d”1"’

1

14



and therefore

J 2 , e g s .
A,fxlog,\/;fs_y(“"5)""x;2y(_”"’)'d°"-’= |

o T om - - "'
, =,(A'x]°g\/1 +F3u(”_5)'+,1+F2p(”"”)'d‘.”

for which ¢ is a harmonic function which becomes zero at infinity.

From expression (25) it is immediately found that

A!%da=é%f&a’[.—%f%dr—}; | a 1

1 0 ©®
+ o Mlog(z-[—r)da———J do+

. 13 2u_ - i ¢ .
+ a%"fjwmg(z +r)d°]]°g \/x+‘3y(x_;)’+l T

f=— 22..:3 3J-d°[— 3zt “d +

| @

y.ar. fMlog(z+1)dc——J Pds+4- -

. a! i R b v e __L _— rye
+3n"J w]og(z—l—1)do]lo¢r 1_*_3“( E)+7:+'2!'-.(y n) P
Conversely, if u, M, w on ¢ are given as definite and continuous functions

having finite partial derivatives of the first order, and moreover u, w become
zero in the points at infinity in o with order higher than.%, while M becomes 146
zero with an order higher than lf , the right side of equation (24) will be a
r
harmonic function regular in S, becoming zero at infinity, and tending toward

: 8 .
finite values on o. Under these conditions, functions ¢, ﬁ; do and 6, given
o
by expressions (25) and (26), are harmonic and regular in S and tend toward
finite values when we approach the points on ¢. The values of u, v, w given by
expression (22) are regular in S, identically satisfy expression (1) in this
same space, and satisfy the boundary conditions, as is easily demonstrated.

6. Cases in which u, M, N or L, v, N are given on the limiting plane.
These two problems also differ only by the interchange of the x and y-axes and
are solved like the foregoing. Let us consider the case in which u, M, N are
given, and we will write the equations

' )+}l 2 (6 -
u= T 2= azJ:- 4=p ax dq, <£ (27)
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\
|
i

"=4‘;70f do+57 fm' (ayfe ]

" - —a—felog(z+r)da),_ |
. | (27)
1 (N, _ Aty |
47:51.0 r.ds_ 4= { da +4 TR 32 do, |

It will be sufficient to find functions 6 and w, from the two equations

1
x4 2 wgoa L2 (N '_1..111-] |
2p b= [ axaz{ d64-2y3y rdc4-2yaz rd?-fﬂ

+iif%dc X'H"' aJ Ja]og(z—}—r)dc, _
- ° o . ‘ (28)

Now from the second of these equations we derive 147
o — L2 (M iee o 1 o M :
rda_ “L[a JNlog(z+r)d,—_J‘.r_d7]+v

[

»+—;—a~§falog(z-+r)da,

whence, by substituting into the first and introducing function ¢ from the
preceding case, it is found that ¢ must satisfy equation
At2pote Atpdte ot u 1 8 (M, y
2 dat g oyt Ba:azf_da 7'8—,{_—dc+ |
[

19 (N (29)

-2_#5; 7d3~§TL5—2/,J‘N;Og(z+T\dG. 1

L4 [ !

This equation is of the same type as equation (24') and function ¢ in this
case, too, is determined as in the preceding case.

IITI. Problems in Which the Elastic Body is Limited by a Sphere.

1. Case in which u, v, w are given on the limiting sphere. Internal space.

Let us call R and radius of the sphere whose internal space S is occupied
by the elastic body. Let us consider point (xl, ¥y zl), the reciprocal of

point (%, y, 2z) with respect to the sphere of radius R, together with the
point (%, y, 2z) inside S and the distances r, r1 of these two points from any
point (£, n, ) in S. Let us moreover set

l={r+yt+a, =TT tr,
rttyntzt=1pcosau

16




As is very well known, Green's function G relative to point (x, y, z) and
to the sphere of radius R is given by

¢=1_E%1,
r In
while on surface o of the sphere of radius R 148

d6__(06) _(B=r) .
dn (39)e=s R Jo=r

Consequently, expression (5') and similar ones will immediately give us:

R—p +u. 0 \
““‘4 "E 5 do +s Ry. l’)a f dey

2 . 9 ’ {
=4TR rad + (R ’)af (30)

0 41R ‘ﬂd +8 RFUP—J)B.f do,

|
To solve the problem completely, we must onl determlne 0 of the equation

o (RP—1 e il ) |

6=a—(4 R, )+9 ( [W do)t R
- : 2 (90 | Gn

r \ o A4p 0 (0 |

*_32(4 R r’da)—-4ﬁRylalJ rda’ |

where 2 3
9~ _ 0 9 o .
la_z=x55+y3y+z-3z

Therefore, let us remember that

4-:R6—(R'—l‘).[ d“"”azf do +f d“-“ (32)

From this it follows that 6 is determlned by equation (32) when we have found
the harmonic function

of the equation

A+3p,09 .___‘3_[ r_m [ ¥ ‘
L (L z)j 2e|+

. ‘ . - - L. N (31')
rgfir-nfz el Elmn 2ol
The general integral of this equation is given by /149
TL'-ﬁfa : ]
+3, 3u .
9=1+¥"3ml l‘fl + zﬁ[(Rt_lt)Irl:_dc]+§ (33)
. ) ° °
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+%[(R=—”z=)frl,'dc]+;_z.[(3=_ l’)fgda]zd.l-}—l—ﬁx.{

where X is an arbitrary function of any two parameters which, together with 7,

determines each point in the space. Noting that ¢ must be finite in S and that

this is true of the first part on the right side of equation (33), even when

B >0,! as is

1 =0, it follows from this that x = O must be true if g

precisely the case in elasticity. The expression of ¢ thus determined is

finite in the whole sphere S, including the surface, and is a harmonic function

in S. This second statement is proved by noting that if
_ r :
?.____l.cjlc-l‘pdl, ;
)
where ¢ is any positive constant, we also have

. , ; -y -

. 0 o

and thus if ¢y is harmonic, then ¢ is also harmonic.

It also easily results from the fact that

_lz)J‘uda 912 J‘udc_l_fudc

and from known properties of the potential function that, if u, v, w are finite

and continuous functions with two parameters which specify the ¢ points together

with the first derivatives, and if they have second derivatives with respect to
these finite parameters, the first derivatives of ¢ and 6 strive toward finite

% 1If in fact we call 7, o, B the polar coordinates of a point we have
5 *k cosucosﬁ 9 __ senf @ l
a—;:—_sm:cosﬂal ——r—aa Tsenz 9 p

and hence

e
aa (l-cjlc—‘ yd l) = —cl-c-1sena cosﬁjlc-'1 ydi+ w ¥ +

4+ I-¢-1cosx cos Pfl‘-l 3{ dl—1—e-1—2= senp J l‘-‘

sena

-wl-c-

. . : .
o peee . a¥ cosucosﬁa_l'a senf 94\, —e ca\p
—l oj-l (senuco;ﬁal _—T—_al—lse_—n_;a_p_)ll ! ".l dl. J

*% Sen is correctly sin in English terminology.

18
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values on 0, and expression (1) and the neighboring conditions are identically
satisfied.

la. External space. Let us now resolve the same problem for the case in
which the elastic body, instead of occupying the space inside the sphere of
radius R, occupies all the indefinite space outside of it. Green's function G
even in this case is

It is merely to be noted that in the present case point (%, y, z) is outside
sphere o, while (x7, y1» 21) is inside. For the value of the normal derivative

over o, we have instead
a6 (a 6 (z' R’) ;
dn 0pJe=p \ R1® Je=¢

and formulas (10) are modified as follows:

'__l—-R2 Atp g, . v

u= 4,.R r’d +8:,Ry-(l R)az_" dc
_rem Mhe g gy 2 k) g

v="1rx ) 5 9° + A )ay 79% 5 (34)
e 8 | H—z& . R 9 g5

o=tz R d. + gt R)a J' .

The equation yhich determines ¢, which in the present case is

d 0 - fde
a-4zRa=2157f7dc+f ,

is nevertheless still equation (31'), and therefore ¢ will always be given by
expression (33), in which we take « and I for the integration limits. The
expression for ¢ must be determined so that the limit of the product of 7¢

and I =~ does not become infinite. Therefore, even in this case we will have /151
to set ¥ = 0 and will thus be able to write

N

f.:’jda 1:3' +sufz fﬁ?l [(R’ zt)J dc] l

el -nfzade flm-nfx]le |

The further considerations do not differ from those in the preceding case.

(35)

2. Case in which L, M, N are given on the limiting sphere. Internal space.
To obtain the solution to this problem, it is well to realize that the quantities
L, M, N must be assumed to satisfy the conditiomns

19



ij zJMda—J'Nda_J(,,N_;M)da=

_ —-j(cL—-zN)da_f(:M—nL)dv—' \ e

which are necessary so that the elastic body will be in equilibrium.
The simplest way to solve the problem seems to me to be the following.

Let us first of all observe that equation (1) give place to others

B |
V\X'?(lﬁ)_i‘:“ ? (,_+e) IR
I YR R I

200 9,08}, @ __v;) 2 @1) !
?.—,-+9=‘5;(’a )+3y(l 91 +3z(laz /!

which means that equations (1) are themselves transformed into them when
ijs apbplied to the unknown functions. Let us note the following

el () () o

For the results of the preceding number, we may write:

operation 7

formulas also:

L du R —P [du ds 7.-{-;1. . @ [08ds.
la_i" 4= 5;774— (R P)Ba: dp r ,
: (38)
Atp t j d
and these formulas, being
2l :
3636 42— 1.6
3? - f&——dc+ ,J——-—Rfrdc+216 (39)
by Green's theorem, reduce immediately to these others:
(38")
t— 1t fJuds 1-FF
R
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| S } ] __a_ e :
+ 123 Ry(R ’)mf?‘“v

b . hd . . . - . . - - - - - - . e - - -

The surface conditions with
. 5 \
cosnz-——l—?-, cos:zJ——Tz, COS N2 =— — —R—;
on the surface become in the present case

=182 ou_ gy 7]
L“"’R"’“(aﬂ"‘k“” B>

4 0
dn 91’

whence:

for which, by eliminating du 0v 0w

%’ 07 B
will have
du RR—p (Lds R:—1I L \
lal 8‘,‘::], -,-s - 4=It J-(2l’-58+q63 CQ’) + 4 "
T W ”3m IGnRF(Rz l)ax 24e,

because of the first terms on the right sides of equatlon (38 ).

It is also convenient to transform these formulas, first

noting that

Bop[fde_ Bor(0d: R—I’Iac-—.c _ |
| =”5+€“R€ aaa,-fod"

whence ...."""'--....-.... |
e -

Iir:Rp[jy. 3az +5 fu’dc- aj“”dc]

Secondarily, among the magnitudes

f%dc; %ds, [Zae fﬂd'c

(38")

by means of these relationships, we

(38'")

(40)

there are the same differential relatlonshlps which exist among the quantities

85 Wi w2, w3. In fact, the expression
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:' i 2 0 o o . 3 —Ua i !
(R l)[(l+2y)axfrdc+2y.(a——zj7.dc—-a—yf7dc)], |
for example, becomes zero on ¢ and its A% i

[(1-|-2u)a +2¢ (3‘” ]._

which, although harmonic, is identically zero in the entire sphere S and will
be L .
o (9 (0 [ o2 9 (@
A4 2 __f_ (5= [ 2 _._j_a —0. |
O P)az 1"16-!-'2{Jl 0z rdc. oy rdc 0.
o . ) o - 4 ’ B

In short, by means of this relationship, expression (40) reduces to the form

_R—r ds A : - |
g R ( EG"'I'UU:'—CUz)F=§; ft+yw—ze, + ‘

' (40"

L R eeng e |

Thus the equations (38") because of expression (40') and similar formulas become /154

du R—P (Ldo . 2
ITB_?= 8 g ,.ac 2!‘:4;0—3/0‘-} zm,+
1+y 3 Atp oy aJ'o.
B fd =g [ e,
dv R —I (Mde 1' D
l—a—= e o —ﬁya——zw.-l-xa,-!-
ot C (38'")
S . ”*‘(R’ ", J s
. 4p dy 14z B ™ 0y !
dw R*—2* [ Ndo 'y : -
lm—_- 8;‘,‘}.* o -—Eze—xﬁg"*'yﬂ."“,

At g p 0 3 A o 5
+4y.'(R _l:)-a_z 44 Rp(Rz l)azfrd "

The solution_of our problem is reduced to determinlng the four unknown

functions 6; wy, wy, wq by the four following equations, of which -- for the
1 2 3 by q
sake of brevity ~-"we write only the first two, since the other two may be

immediately derived from the second by circular permutation:

29 o (Re—1* (Lds 0 [RR—1I* ( Mde
1l — S A |
a1 T° ( 8w ) oy\ 8=p [ r )+ |

i ‘ (41)
R’——l' NdG 31 ‘

p.—l 09
+32( + 7a 77+

22



=Ry 91
. T - L 4
L aw P (Be—p [ Nio\ @ (R—P (Mds |
e BB AR M)
0! 0 lﬁnya 7 dz\ 167p J. . 1)
20 96\ , ldam
g +3 ( 7y yaz)+§ a1 to
E , 3 A4p (0 (0, 2 (0 )
| "ZT‘@(%}[ de—y5.)79°

To find 6, let us again use the notation in the preceding section:
]
9=f7da, 4z Re_2la?+9 (42)
] . "

With ¢ now indicating the expression given by

‘g—(%ﬂ ¢=5%[(R’_l!),fpic]+ %[‘R’—”)J.Mjc-h \

P L[y [N (43)
+a|E-n])
the first equation (41) reduces to
29y 32 +2p 3<?_,_=ﬂ+2vL —e (44)
or T A w7 |
or to
d0(,09 0o . !
where a and b are the roots of the equation
2Atp, 32 +2p
T — [ 0.
Ap +2(1+1L) S ’
The values of these two roots are given by
D4 B T —2 B2 0F ),
o200+
po 22 te— \/(27‘+£’~)’—2(37‘+2P)(1+F-)
2(x +p)
and therefore since X + p > o, u > 0 they are always conjugate imaginary
numbers. The general integral of equation (44) or (44') is given by
7 S
?clj.la’-b-ldl .lb-l(pd'l_*_l‘_{_
k. O (45)
o

where 3 and xy are two arbitrary functions of any two parameters which together
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with I locate each point in the space. The first part on the right side of

equation (45) is a harmonic function, regular in S and real because it does not

change value when a and b are interchanged. For the second part to be real, it

is necessary that xj; and Xy be conjugate imaginary numbers. Since /156
|

Ll .+b[(x.+4,)cos(——-logl)+7‘ Boen (*57 Yog)]
l | |

may be written and since in this form it is easily verified that the expression
is not harmonic it will thus be necessary to set

X|=X!=0‘
Therefore, for ¢ we have

91—11«1 b -dzflb 'le;_( fzb '(Ddl———fla todl) — 2
/

(45")

o YT ~ ——
—20 4w e f’_ e I (\/3 O ter—n

e Y log )(pdt

50+

After ¢ has been found, and therefore 6 by means of expression (42), the
rotations wj, wz, w3 are calculated by simple quadrature. The second equation
(41) may in fact be written

lam. o (R*— Nda); Q_(R’-—FJ:Mdc)_*_ A I
31—5?/( y. r 0z ST.»p. rs :

- ' (46)

! a( 29 a_q)'_31+ép( 22 a?) \
+4nRal dy Y52 8z Ry 3/ BT i
When this equation is divided by 7, integrated between 0 and 1, and when it
is noted that the arbitrary quantity introduced by integration -- since it must
be a harmonic function regular in S and independent of I -- cannot be reduced to
anything but a constant h;, we find
. fdifa (R—p (Nds __i(R’—l’ Mdc)]+ A
Gy == 7[5}(—855‘»’ = ) 0z 8ru.. |
’ -0 . ¢ > (47)
1 (o9 0% _3r+2p (23?_1?.3)411 h.\
+r( v e ke ) \Tay13s) T
If it is noted that, because of the relationship
J@rm—1yas—o,
J " . £ .
we may write 157

o (B—r Néc)_i(m'—z' Mdc)z
5_( ko 3
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==. 81F‘N( +3R_-:Z_)

(5 B |
+3-% PI(N" Mt;)(~—m)dc |

it immediately results that the first term on the right side of expression (47)
is also finite for 7 =

In similar fashion &9 and &5 are calculated, and the relative expressions

are obtained by expression (47) by cyclic interchange of the indices 1, 2, 3
and the letters x, y, z; L, M, N.

Displacements u, v, w which still remain to be determined are obtained
from expression (38''') by quadrature. If we divide each of the equations
(38"'') by 1, integrate between O and 7, and note that the arbitrary quantities
introduced by integration can be reduced only to constants kl’ k2, k3 since --

like the other parts of u, v, w, —— they must be functions regular in S and
satisfy equation A2A2 = 0, as well as be independent of I, we immediately find

f \

0

A P
8..: erc 2yz6._y"-"+zw’+

Il

4
+ ~|=~

l

I* 3 2+ n 09
e

B —P (Mds 2 - i,
=JT>8 SR pyrsnens
Ve
1 H
:b__%zgﬁ( Mfr+l—hz+hq
”f‘.’l_s fN‘“_'izo—xw.+Jw.+ S

3 X-H-‘ n 09 _
)5;-_:{41=:Ry( l)a l+la h,x-{—h.y 1

Here, too, if we note that, because of the relationships, ; /158

Jrae—o,...

we may write

‘dIR—r (Lde_ iR’—”fL(~—-—)
|5 5= ) oo gt A ,

—_ —— 2 ga e
— —— s e

and that
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it results that expressions (48) for u, v, w are also finite for 7 =

Conversely, if L, M, N are finite and continuous functions of the coordi-
nates of the points of sphere ¢ together with the first derivatives and they
have finite second derivatives, the ¢ determined by (43), the ¢ determined by
expression (45'), and the 6 given by the second equation in expression (42) by
means of ¢ are harmonic functions regular in S and tend toward finite wvalues in
the o points, together with the first derivatives. This occurs because, for

example 0 Lde 0.9 (Lda 9 (Ld
: —_— il G 5
—;kR P{f rs ] 218131 4—333

r

i

and because of the well-known properties of the potential function. Similarly,
@y, By, w3 given by expression (47) and similar equations are functions
harmonic and regular in S which tend toward finite values in o points. Since
the equations

o do dw. 10w 3o |
Bz ay 9z’ T e\ay T ae) T |
are evidently satisfied, if expression (2) is satisfied for the 8; &;, Wy, W3

expression (1) is also satisfied. To show that the values of u, v, w which
we have found also satisfy expression (1), it_therefore suffices to demonstrate
the fact that the corresponding values of 6; ml, 9y, W3 satisfy expression (2).

In the meantime,

T e Y e ———

a(lam.)_i( am) Adpde |

9z\"01) dy\ ai 4=Rp iz

1 2 ?9 — 31 39 314—2a :

4=Roz 3P-+ 2 +- o ¢ 1
is easily derived analogously to expression (46). However, on the other hand,
by expression (42) /

A42p 200 1 a_[x+2u il 1-37"'”2"13?],
_—( )__4zRBx @ ort 2 g al

0
0 [, 0o 3 dws\ , A42p 3 (86 _
5‘%(”8’1’) (’ az)"" 2 Bx(lal _
At [ 3)-F2p 09 32 +2p
T 4% Rpox ¢+J: + At W-+20+¥)J =90

hence,

because of expression (44). Integrating the equation

9 (,0%\ 9 (,00 172113(9_)_

5“( a_) a—y("a—z‘\)+ o 7s\'7
AN A A lji-'t?_’“=o
at 9z 0y 2p dz

l+2£1.3_9

with respect to I on condition that 0% _ 36’4_
2u O«

dz oy

be regular in S, it is
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found that
am, 0% , 242pn0H

9z 0y 2u az=0‘

or expression (2) is satisfied. Finally, since from expression (38''') it follows
that

z au 2 RL—P de ’
1+zl py 2 2¢ |
(EP Blaz’ :
and g; gs,--- tend toward finite values when 7 = R, the surface conditions are

also satisfied.

The indicated method of solving the preceding problem holds true whatever
the values of A and u. However, if X +pu > 0, ¢ > 0, we may also state that the
problem has a single determinate solution, unless there is an arbitrary rigid
displacement of the elastic body.

2. External space. The problem of elastic equilibrium for the space
external to the spherical surface of radius R, when L, M, N are given on the
surface, may be solved by a method entirely analogous to the preceding. Taking
our start from expression (37), after having applied formulas (34) to it, and

the conversion formula /160
l -
f‘a—gdc fﬁ———da—4 0=—2u€ f da,
op r |

: !

we find
ou_ I duds l—l-y. .
bor = 4= Jop v T4p (- R)az

Since now on ©

x N .
COS".’I,'=='1§) COS”y='Ig~: COSMZ=—“.

the boundary conditions give us
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and therefore we may write:

lau P—RfLds —R* dc

27=— 87:‘1‘ rg» - 4 R ( Ea'l'ﬂmz'_tme)

At 09 . At . ]
- 4u (Z—R!)a_z:+]6::Ry.(l’ R)a f da,
Noting then that
: PRt (0,
e -f—; + —4?—13- ’a—x r dﬂ'A,-“- -
we find
r—p |
4= R ( 50+n%—¢°’.)£; E%ze—l,-ya:—zi?‘.+ ‘ﬁ
. Z’—-—-R’ 0 (22 @
,+4r~R (2uazf d"+ayf d‘“zﬁ 7"“)=A
xa'*'yua—zw-[— (l2 R’)i od |
4z Ry RF , 2z) v %%
and hence in place of expression (38''') we will have the formulas /161
au P—Re R2 L ).
At 3atw Va.
4". (l! ’)az 44 R (lz Rz)azf dc’ {

- . - - - - - - - . - . . o . . - - - .

These equations are identical to those in expression (38'''), except in the
sign of the last term. 1In similar fashion, the equations which 9; By, Wy, Uy

must satisfy will be identical to expression (41), except for the sign of the
last term. If now, still setting

0

we note that

we immediately find that ¢ satisfies the same differential equation (44) when
it is assumed that ¢ is determined by the relationship
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sl -n) e

- . 3 IVd '
We will therefore st111 be able to set . -
. g n S —
=204y e -m» (\/3(1+y)*-—l‘-‘ r) ,
= —— ] : T e - ] - q’d .
T BoTe - J | ° 1 200 +p) ogl i | (52)/162

Solution of the problem is completed by the formulas

f@l_[ (z —R’J‘Ndc fi(pe:fefﬂ,fc)]_ | .‘ ’ (53)

-~
-

3 :
1 (,20 0% 3____1+2-'"f(3-22_‘_z?_?) |
—4=R( Jaz)+ 8xRy J\10y 10z a, \
(56)

8‘.‘.’:}. —‘-—‘-'r’ '—?;xa_y(;+2()’

dl[ —R (Ldc 2
u=J -_
. J

' l—l—u.(l'

B 3 A4tp g ?;9]
)ﬂ—z 41:Ry.’(l' R')Ba:’

Functions ¢, ¢, and 9 given by expressions (51), (52), and (50) become
zero at 1nf1n1ty, and the other functions 7 wz, ®33 u, v, w have been deter-
mined on that condition. An a posteriori check is made w1th considerations
similar to those made in the preceding case.

3. Case in which L, v, w are given on the limiting sphere. Because of
the symmetry of the spherical surface with regard to the coordinate axes, the
problems in which u, M, w or u, v, N are given on the sphere do not differ from
the problem which we propose to solve, except for the different name of the
coordinate axes. In order not to dwell too long on these new problems, we
will disregard the case of external space, because it is easy to make the ex-
tension and these problems do not have the importance of those already solved
for elasticity theory.

We will, therefore, begin first of all to establish certain notation and
certain formulas which we will constantly use, i.e., let us set

7 . .
re ;1 6 \

) )
- 7 H : -
i 1 Gy . ‘
q;.-: ‘—')—dc’ \b’i=“ dl —-dG, t=1 2 3. \
Jr {J. !'r L /
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b, ¢'; w , V'. are harmonic functions, regular in S and among them the following
relatlonshlps ﬁold

a L4 l :
§=7570¢)=¢ +1- ?=,f9dl;
]
]
i . 1 (56)
=7 (4D = ¢+l", gi=7 [0l |
o .
This system of formulas is completed by the formulas connecting ¢ and w and /163

0 and &y, i.e., |

4nR$—2ﬂ$+?, o= 2«Rl=fz=mn

| | (56)
4= Ro.=2z”'+4,,,_ yi=2xRI =fz u.dz

It is easily seen that ¢'; ¢'y, ¥'_, ¥'3 satisfy the same differential relatiom-
ships satisfied by ¢; ¥;, V5, V3 and therefore ¢.; @, by, ®3. We have, for

example,

29’ Vs Y _ -' ' ]
3x.4-2y(az ay '

[ losantzenbe-3-oo

(A+24)

For purpose of brev1ty, let us also set 164

U— (& —1 [, V= (R*—I*J"df,_ W= (R*-—l')fwd“ f$

i
i

* More generally the expressions
o

H F f 1
- 1 - l " - R
-%fl‘-ledl; —};fl‘-lc‘-i,dl, —FJlt-lﬁ,dl, TJ le-18,d1 ‘
(] 0 a 0

where ¢ is any positive constant, are harmonic, regular in S, and related by
the same differential relations by which 85 wl, wz, w3 are related The same

may be said of the expressions which are obtained by performing operation

1

A (im1...d1on 8; 5, 5,85 any number of times, the value of constant c being

le

variable each time the indicated operation is applied.
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_ 1 1, R=lcosotr),
Q‘JL(r g ~—%r )d"

1 1, R—ICOSm—}—i
M = M(T———log*‘é——i‘———r)da,

> (57)

m=|N(1— L 1og ;—__.__R“*-’;‘;"’*-")da,

s |
and let us note that

3¢ _R—p (L 1 RBR—I( L
1= f7da—ﬁdec= f—,?dc,

2

if, as we assume, conditioms
dec=0
[

After this, in order to solve the problem we will make use of the first

of formulas (38'''), divided by I and integrated from O to I, and of the last
two formulas (30):

are satisfied.

e 1 (2 TS W
= Z—F—lﬁ(— Z?+.’l%—zya)+ ﬁl(ﬁxq’ +yy—z¢ z)+ w
Ap 2t 029 .
+ 4‘:'-R'J- + (R’ l) +003t ( )! -ri (58)
1 4 7.t+u ' )
=4=1_i+8zR;;.(R,—l’)——" . ' ‘
_ W 4 At . ‘
w_4zRf¥8anap Z) ] Jl
The problem is reduced to determining the unknown functions 6; &1, &2, &3 of [165
equations ‘
1 98, 1 (v, 0w\ A4p ,d9 ' l
.9=4’:?’a—z 4—R(’3‘9Taz) iz Rul + (59)

A ¢ At _f____l[ ( )
+4 Ry- e {_2 =Ry T3z 2=R 2p += 3z+

Formulas of this sort could have been derived by starting from expression (8)
and substituting eXpression

e

With the formulas to which we are referring, it would also
have been possible to solve the problem in Section 2, but these formulas are

less susceptible to easy transformations than are those which we preferred.

therein for G1
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g0 ), 1 A, 8¢\, 2% 2¢:]
EEr zax]+m[§;(?“,—z)+”a—x."ﬁ]’

¢

-~

2(3'= 1 a—g— .;_.._

47p 02 4wRaz 4=Ré
+-1+u'l, 9%y’ +l+sz 9

I

4?Ry amaz 2= Ry iz ) _ >
24 _ e 1t o !
R 2y +y grr ’]+ P 3 9
1 [ aw. 0¥y :
M[h Ty LA R -*

= 1 oV 1 3% _ X+4pf 39 . 39
26, = 4xRJx 4mpay 4= Rp(x yaz)

A )

7""*"1: *e Atp a?_l_

T 4n Ry dxdy 2= Ry- iz - RN ‘

1 [ 9 s aq,. S

» +2 R[2p- 3y+ +% ]_ . |

- 1 a¢, aq; ' S
T 3= R R[2u. ay'l' +4‘: ] . IR

In order to do this, let us meantime note that the last two terms of the first
of these equations, except for the sign, may be written

8TRP[? +x——@? 7ﬂ

(60)
+m[ya—z(2% ’;‘a)_zaz(z"': :)]
and since
a " a ’ : ’ N
L@p—y)=—212 5; 9—?>+i(2'.—¢.>,_ |
0 PR § o :
@t =¥ =7 Tee—n+Len—vy | )
o 24,‘_%__.5’.‘15 d::,‘dl, o _
T e, ) o e
the total of terms (60) reduces to /166
A Ny AEp ' 1+?l’- ;
8——zRy(2?——?H4 =Ep a,( P —¢)— mlat(h q>)+

U R R R R P
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L I G 1 Iy R P
t 18?5409~ 2R la Ce—¢) |

Adu( 2  _ Y
—811? (yaz , 3y9+

8 le [ 3z(aw 32 : 3!/(3::, aV)]

We obtain the last transformation by substituting the value given by the

(60")

o\

second of equations (59) for wl, and have indicated by (y—-—zay)i;

. . . . . o 9

the operation which consists of performing operation yaz_zé—y |
twice.

We may therefore replace the first of equations (59) with the other one:
A42p , 32 +8p Adtw 09 .

2p ¥ T ! 21’_ v iz T ) i

+21_’Lffxa_a_(a?) 1-}-#1,3’ _1+H(y3 3)’?.=

® dl ¢ 0z 2p 3_2_?3—3/
Rae :

@uaa:+8y+3z

S S LTS

3? +lt

,‘ (62)

Observing now that
8’ ze
_|_ o W J,( pdl [i) =

-.ze @

ze __I_e_) ) '_ |

=£‘ei‘z s+ g“'gﬁ 8+ (zz zx)‘l"%gz

expression (62) is transformed into the other 167

1+2p ¢ 51+2u 1+2u 2*e
1+y AN _530 aW_ ‘ (62')
+ 5, (yaz 911)? y.az_l_ +

21“’”[ az(aw )= a (aW ,aV)]_

57 AL A

oy 0z
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From this equation, ¢' must first of all be derived. For this purpose, it is
well to introduce polar coordinates, for example, setting

z=1lcosa, y=Ilsenacosf, 2z=1IUsenasenpf.

It is then immediately found that

2,02
Y9z~ %oy~ 3P

and therefore expression (62') is transformed into the other

‘ | (62'")
+3;’+a—z H [ qus 7= pylay — Z"’)]}

If the deformation comes from rotation about the x-axis,¢' is determined
by quadratures.

In the general case, this equation, taking log 7 for the independent vari-
able instead of 7, becomes an equation with constant coefficients of the ellip—£168
tic type which can be completely handled by the method of successive approxima-
tion. However, the easiest and most natural way to handle the present question
seems to us to be that based on the use of spherical functions. If we set

. e e - . e o o
) 9"=’§9n‘) V’-'——-§Vn1 'W='A§W"1 o 1

indicating harmonic spherical polynomials of degree n by &, V,, W, , the right

side of equation (62'') will be reduced to

P oL
L({R O , 0V 3Wn lj [ (3Wn BVn)__
| 3x + ay-+ doz 21 dl oy 0z :
. . 0 - . . !
) S e z..z (3Wn'_;_3Vn]); ' : ‘
-0 - oy\oy . o=z}) . - = .
and the quantity under the summation sign will be a harmonic spherical polynomial
of degree n-l. Since now ¢' must be a function harmonic and regular in S, we

may assume it, too, to be expanded into a series of harmonic spherical polynom-
ials in order to have

¢ =25 ¢n.
)
Since then evidently
1,,5,0¢ ,39'_"(2n+l)(ﬂ+1),
gVt lgr tl =2
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the following will have to be true:

(2n+l)(n+l) ¢ + i+y. 8’9,.; P was.m_l_"
2 ¥ 20+12p) OF TAt2ele 0z T

0Vo+s OWnsr 1 0 3"’{.“ A anH.
s dy + EX; _ﬁjdl[yﬁ( 2y dz )

_z'i(aWwH aVn-H)];
oy\ 0y !

|

Introducing polar coordinates in place of Cartesian coordinates, it is known
that the right side may be given the form /

: I E IR . son BB
s F 7 (1] 3 (Unicosibt Buusnipon

in which the ©_ . are functions of a only, and in which the constants A, ;, B_ .
n,i s 1 n,i

must be assumed to be known. If ¢' is put in similar form and the attempt is

made to make the last equation identical, it is found that

|

I XN (A:mos:B+B..,.senzﬁ)ea.z'
o “2“lR) 2“(2u+1)(n+1)(7+2u—o+zz)z* ‘

must hold and therefore

'—9 $,I(£\" <. (An,zCOStg-*—Ba,: senzB)Gu.: 63
Ut R}Z(2n+1)(n+lm+2y)—0«+u)-’ ©3

The calculation performed shows at the same time that there is but one
function ¢' satisfying the conditions imposed. Since, moreover, the series

|
2,.( ) 2,.(11,.,,003:3-} Buisenif) 0,
|

is absolutely and uniformly convergent in S, series (63) also has the same
property.

When ¢' has been found, ¢ and 6, as well as @y, v,w are consequently

found. However, it is easy to show that w'z and y'y and therefore ¥y, ¥3; @,,

@j;uare determined. The third equation of expression (59) may in fact be
written taking the relationship

o @h— )+ (2«» RS (%—M-— 3
and equations

(64)

35



Atp » Ky

Atp dg- Ate
41‘1‘}1. azaz+

| 92'5;—4 {'- a (29_9)+
—_— | ) 9 ’
t+4.-.R[‘”a“5(28°-.‘f-)j”‘,{;;(”‘_"“)]' RIS

+ —

(64)

into consideration, and from a similar formula even &3 is found. Quadratures /170
will be used to find Y9 and P3, and hence $'9 and V'3, and u.

It is easy to verify the fact that under very broad conditions for the data
the formulas found satisfy all the conditions imposed.

4. Case in which u, M, N are given on the limiting sphere. Here too we
note that, because of the symmetry of the sphere, the problems in which L,v,N, or
L,Mware given on ¢ do not differ from those proposed here, except in the dif-
ferent name of the coordinate axes. Let us add right away that the difficulties
encountered in the solution of this other problem are of the same nature as those
which were encountered in the preceding problem. Therefore, we merely allude
to its solution.

The starting point will be the formulas

s U )‘+l’- 1_3_2
n 1 (2 _ ) |
v=.4_‘;'_y.————2.—'R(—2——lzy-?+z‘Pl x¢3 +
1 [ . , Adp 29
+m(§“;y?+zﬁb'_x¢’)+4ﬂﬂpp .'/+ ,
+§lj}zi( z=)3?+cost BN N (3:)
=Ry |
2 1 _ o
to:m————_gﬁR(ng?—i- 4” J‘I’)

‘ 1+u ,a?
*’41=R(2p”+”” ”’) i=Rp’ az+_

+£+Ry( z')a‘*’-l-cost J

and an attempt will thus be made to determine 6; &, mz, @3 so that the following/171
equations will be identically satisfied:
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9=_1_a'v ( am)

4zR 3x oy + 0z
+ A4 3?
. 41'Ry F1 ( + 3z’)+2 Ru.(yay +zaz
1 o 3?3 39: 3% ' ”
2':Ru.?+ ( )+ 2y T ]+ .
Ay 209 09, L adh aq»s aqu Y
+4=R[y.?+2y-(y2y+za_z—)+z oy +z yaz]’
9g = 1 (a_m_@)_
‘T amp\oy 22z
_ 1 (,29_,2¢ 3____1+4-"-( 99 _ 3_*_)_
47 R (yaz ay)+ 8% Rp. 2z “9y
~1 3 9 3 8 (66)
_ _ y: ¢ Ul Ul |
2#12[_ 2hta{z,+ az) ]+ ' ; |
' - !
Y's vt a7 - :
tizr R[ 2¢t= ( + az) yay,—z_a‘z_]’ )
oo L 9U_ 1 3® |
“TE=Raz izp gz :
g L0 M‘ ‘e, %9 l+u>a_1>_’
T 4= R 3_ 3_z 4 Ry.lazaz 2T:Ry.x 8z+'
1 29 aq». a%)
(e e L+ bt ol —y 20
RS S A 1 Y 2y a\h)
_ —41=R(2—y.za_w—+4‘ +2 P -y P
2 Gy = . . . . . . - !
Now because 5l 341 29 . ‘ /172
______ BU: Y3 L 1 .. ,
SB[ 2t ( *3 ) v, —=5t]+ |
3su avs\__ oY __ as’"-l= |
- 39“ -2y, Q_‘"_‘]=
R [4¢.+21 vo—157]

g @ k— ¥,

St

. ==
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the second equation in expression (66) is written:

! 9 1 fam amy__ Yy
4=R 31(24"“‘1")‘_E§(’5‘y— ‘ , )a
- 1 (.2 29y, 32+ 4pu( 29 99 | (667)
— 2 (g2 __ 99|y 22T 20 09 ,9%9). \.
4=R(yaz zay)+ 8% Ry (yaz- z ay)’ s
while the first equation (66) is easily formulated as
1 U, 1 N\ _2x+e, Y
0=m% 4= ( +8z) 4= Ry + l
52442 ,99 7\+u 24u ?_2_ P 2%
-4—8=Ry137 4= Ry 8xf+2rRuxax 34—Ryxax ‘ (66'")
2 |
—m(2?— R[Z_(Z‘Pt—‘lﬁ) ./dz(z‘l’-'-'l’ )] /
| 3 T
Performing the operation 7 5 1 On this equation, noting that operations 17?7’

e _, 9
and zay yaz

page 33, and (66') we find

are exchangeable, and making use of the identity given on

B

2(7—}-2;1;1’313 +(91+lbu)l'a (7l+10y)l

__2(A}-2p)l3133, (3X-¥2p)ab’== . “n
—2laal +R( 3)2)]_
”2R[ aj(%?}'"aa_ﬂf) yaaz(ag aagf)]' 1"

From this equation ¢' is found as above by developing the right side into /173
spherical functions; ¢, ©, and u are then determined, and w'l, wl and & by

quadratures, starting from expression (66'). Substituting

l+2y._a_?_ 2'_.'/_1 1+2u3,» 3./1
2. 9z oy 2g 9z ' 0y

into the third equation (66) for %;E 89y , we obtain an equation which, with

9z |

simple quadratures, can give us wé, and hence wz, @ In the same manner, we

9
find ¢'3, ¥ and %3 and v and w also are consequently found.

IV. Other Boundary Conditions Which Are Suitable for Locating Solutions
to Indefinite Equilibrium Equations for Elastic Isotropic Bodies

1. Even a superficial examination of the solutions to problems of elastic
equilibrium previously given is enough to convince us of the fact that they
already contain all the elements for solving similar problems in which, instead
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du dv dw

of stresses or displacements, the values of dn ’ dn ' dn  2Te given, or values
dv .
of u, v, %E , or values of u, an %% on surface o, and those which are ob-

tained from these by interchanging the names of the coordinate axes. The
general concepts indicated in Section I may serve as guides for attempting to
solve these problems in other cases also in which ¢ differs from a plane or a
sphere.

I have no knowledge that research has ever been done on the most general
surface conditions which are compatible with indefinite equations (1). However
little value such research may have for elasticity theory, I nevertheless
believe that it can help illuminate the study of systems of linear partial
differential equations of order higher than the first, among the simplest
of which must be considered those of isotropic body equilibrium. Here we
should like briefly to indicate several forms of surface conditions for which
the calculus of variations is sufficient to demonstrate the uniqueness and
existence properties. To be sure, these proofs -- besides requiring the fact
that u, v, w have regular derivatives in the vicinity -- are subject to the
usual criticisms of Dirichlet's principle, but my opinion is that in studies
which are general in nature they furnish valuable indicationms.

Let us begin therefore by giving equations

A4p 90 I (a)
' a3 a
Aty ——— P =0,...
various other forms, availing ourselves of known identities:
39 0 Oy 0%y ‘
4
Aty = a +2(az a—;),... ; (b)

If by means of these identities we eliminate Azu, sz, A2y from equations (a),
we find the equations (2) already reported'

0+202 2 12, (3"" * %)=o,... | ()

If we eliminate 38 , 28 | 38 instead, equations
ax oY 3z

96 dam| ;
(z+2,1)A=u+2().+y)(ay—57)_0,.._. (@)
are found. Finally, adding equations (a) and (b) term by term, we obtain
3 . 30: awz)
3 +2p(A u+ 7y 7z 0,... | (e)

We will pause only on forms (a), (c), (d), (e) of equations (1), but it is
clear that others may be obtained from them by the same, or similar, methods.

Let us now multiply equations (a) respectively by 68u, &v, déw, let us

perform summation, and integrate over a portion of space S. We thus immediately
find
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OzdeZ(A' gw)au= \
=—Jd62(g::+ :—yecosnz)au—_ :, ()
—3d %f(Au—}-Av-}—Aw—}%ﬂ')dS ‘

5

-GG

[

where

If in equation (f) we set S u=u, § v=v, § w=w, the same equation is
changed into the other

—;—J.(Au-i—év+Azo+L?-6')dS+

+Jd z(d“-i-')%-—-&acosnz)u=0. ®)
Assuming that on surface o the conditions
o
::—I—li—pecosnx—c,u=0, d”—l—)‘ty'ﬂcosn./—c,v-—Ol‘
In 7":‘,_-‘uacosnz'—.c,w=-0 \
are to be satisfied -- Cys C9» Cg being positive constants -- expression (g)

gives us:

%J(Au +Av+Aw+7%’—"-0’)dS—i_—

+ [(eont + o't euw)de=0

+ u

and consequently since A > 0 the following must be true in all of S and

on o: u=v=w-= 0. With the usual reasoning, it is then deduced from this
result that a system of solutions u, v, w of equations (a) with the boundary
conditions

L—c.z¢+d"+l+"ecosnz—o, . (a")

in which L', M', N' are known functions of the points on o, is uniquely deter-
mined. From expression (f) it results in turn that the functions u, v, w which
on o are subject to the condition
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[L'14+M'0+N’10——~(c.t¢ -{-c.v’ +c,w)]dc cost.

and minimize the integral

f(Au JAv pAw 2t a*)ds
§ ¥ .

satisfy the indefinite equations (a) and the surface conditions (a'). When 176
the existence of this minimum is admitted, the theorem of existence is also

proved. The constants Cys Cys Cg may attain the limiting values 0 and « in-

dependently of each other.

This reasoning may also be applied to other forms (c¢), (d), (e) of equa-
tions (1) and a determinate form of the surface conditions compatible with the
same equations will correspond to each of them, These may be written thus

L —c,to+()-r2u)6cosnx-+2p(u,cosnz—u,cosn_/)— N (3

L -—c.u+(7+2y) +2()—;—y)(w,cosn_/——n,cosnz)= yeoi (d)

N ‘ u - . T .

LYV —c,ut26cosnz42p ((T” + éycosn y — G, cosnz) =0,... | (¢) |

The latter contains, as a particular case, the form introduced at the
beginning which is suitable for giving surface stresses or displacements.

Every time that the surface conditions are such that the ome corresponding

to the x-axis contains u or U and none of the other displacements or normal
dn
derivatives, and a similar situation prevails for those corresponding to the

y-axis and z-axis, an attempt can be made to solve the problem of determining
the solution of equations (a) corresponding to the given surface conditions
using the prinicples expounded in Section I.

V. Some Observations on the Preceding Results

1. The problems relative to a portion of space limited by a plane or by
a sphere, which we have studied, must be considered as the simplest among the
problems of elastic equilibrium of an isotropic body. These are characterized
by the property that the equations, on which determination of the magnitudes
03 wl, 99 w3 depends, may be given in the form of ordinary differential

equations or partial differential equations, while in the general case, these
magnitudes will appear in the equations mentioned as surface integrals in-
dependent of them. The feature mentioned is related to the fact that every /177
harmonic function in a portion of space limited by a plane or a sphere is

easily expressed by means of only the derivatives of the potential function of

a mass distributed on the plane or the sphere with a density proportional to

the values which the same harmonic function assumes on the the surface.
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Let us add that the problems relative to the portion of space limited by
a plane, .and those relative to that limited by a sphere, are not independent of
each other because, on the contrary, the first may be easily derived as parti-
cular cases of the second when the radius of the sphere increases indefinitely.
However evident it may appear, I do not think that it is useless to demonstrate
it rigorously, at least in one case, particularly because I believe that this
has never been done explicitly. Therefore, let us assume that the sphere of
radius R considered in Section III has its center at point x = 0, y = 0, z =
= ~R, instead of at the coordinate origin. It will then be necessary to write
z + R and ¢ + R instead of 2z and ¢ in the formulas in that section. Assuming
X, ¥, z to be finite, it is clear that

! . P—R . a4 y’+2'+ 2Rz
li LA y —_c
32:13- L ;Eg R ;g: . R 22 :
012 z 9 4+ ¥ 9 [ J . .
lim — Z — lim + 2 =.2. A
RLmlial R= (R Y Ray Raz 0z 0z |

Let us now take into consideration formulas (34) and (35), which give the
solution of the problem of elastic equilibrium for the space outside the sphere
of radius R when the surface displacements are given:

; Ad-v .,
-&F ,’d o Ru(z R*)BJ- da,...

a“ 1 49

fronms o o2

oo [

5
o | -al[(Rf--mf—d] }[(Rf—p) 2a ”dl

with

P—R (0. 1 La(o, , -1 (6 |
ey A FLI =S ¥l i e 3 L

~
=
~
(0]

At the limit for R = », the values of u, v, w; 6 become:

z (0 —193 (9 ,..
o= g [ o= g w4 |

7 A4 -

v — :
o ) L LY LR PRI
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1§ o (" g._ay(2ds LA
+m§{_2x:[ﬂdc 2yafr,da 2(z+R)‘;'r’dc+;

+(3=—z=>[§;_[;,idc4:%af§,.dc+a%j%dc]},' 7

at the limit when R = «» we have

S SRR LR ) O

These values of u, v, w and 6 coincide precisely with those given by expressions
(10) and (11) of Section II.

2. It is obvious to note that the same procedure which we have indicated /179
for the three~dimensional case is also true for the two-dimensional case, and
even more generally -- if one wished to comnsider it -- for the case of the
equilibrium equations of an isotropic body in linear space with any number of
dimensions.

In order, however, that one does not feel that I go too far in my estima-
tion of my views -- above all in regard to their originality -- I will now
note that it is easier to explain myself by showing sufficiently clearly what
these consist of, because the roots of the method which I have followed to
obtain the solution of the elastic equilibrium problems of an isotropic body
may be found even in the oldest works on the subject. This is particularly
true for problems in which certain unknown functions are assumed known and are
determined after having satisfied the surface conditions. This is the method
that Thomson followed to obtain the solution of the problem of the elastic
sphere. The research into those particular solutions which are needed for
application of the Betti-Cerruti method also bear traces of these ideas. Even
the outstanding solutions in terms of definite integrals of problems of the
sphere** and of the half-space given by Professor Almansi have basically this
origin. Most explicit of all in following this procedure, however, seems to

* Of course, in this passage to the limit it is assumed that the integrals

Y do, ... also remain finite in the limit.

o

*%* I am happy to cite the work by Professor Somigliana, "On the Equilibrium of
an Elastic Body" (Annali della Reale Scuola Normale Superiori di Pisa, 1887)
which gives many calculations reminiscent of those of Almansi's, but of which

Professor Almansi it is:certain had no knowledge.
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me to be Professor Cesaro who, in his Introduction to the Mathematical Theory
of Elasticity (Introduzione alla teoria matematica dell'Elasticita), after -
having given the solution of the half-space by the Betti-Cerruti method, gives
another which is very similar to the ome given in this work and on page 120
says:

"Professor Cerruti has treated the preceding problem 'to give a fairly
easy illustration of the general method' proposed by Betti. When one does not
have this purpose in mind, but wishes merely to arrive at the solution of the
problem of elastic soil, it is very easy by a more rapid and direct procedure
to arrive at the general formulas obtained by Professor Cerruti and to do so
without giving up 'econduct of the solution in a manner which can provide some
light for treating similar problems.'* It suffices in fact to take a look at
how he notes volume dilation ©, then to calculate the displacements (u, v, w),
and to deduce from them the expression for 0: this function is isolated in
a relationship that serves to determine it."

I hope, however, that it will be recognized that with the introduction
of formulas (5) and (5') containing the Green functions G and Gl’ and with the

other observations made in Section I, these ideas come to acquire a generality
and a power which they did not have before.

‘Seientific Translation Service
4849 Tocaloma Lane- -
La Canada, California =

; NASw-1496 - =

P4

* The words in single quotes are those of Professor Cerruti, Accademia dei
Lincei, 1882, p. 81.
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